Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Medical Journal ; (24): 2581-2587, 2019.
Article in English | WPRIM | ID: wpr-803151

ABSTRACT

Background@#Plant homeodomain finger protein 23 (PHF23) is a novel autophagy inhibitor gene that has been few studied with respect to orthopedics. This study was to investigate the expression of PHF23 in articular cartilage and synovial tissue, and analyze the relationship between PHF23 and chondrocyte autophagy in osteoarthritis (OA).@*Methods@#Immunohistochemical staining and western blot were applied to show the expression of PHF23 in cartilage of different outbridge grades and synovial tissue of patient with OA and healthy control. The normal human chondrocyte pre-treated with rapamycin or 3-methyladenine, treated with interleukin-1β (IL-1β). IL-1β induced expression level of PHF23 and autophagyrelated proteins light chain 3B-I (LC3B-I), LC3B-II, and P62, were examined by Western blot. A PHF23 gene knock-down model was constructed with small interfering RNA. Western blot was performed to detect the efficiency of PHF23 and the impact of PHF23 knockout on IL-1β-induced expression of autophagy-related and apoptotic-related proteins in chondrocyte.@*Results@#The expression of PHF23 was significantly increased in the high-grade cartilage and synovial tissue of patients with OA. The IL-1β-induced expression of PHF23 was gradually enhanced with time. The level of LC3B-II, P62 changed with time. After knockdown of PHF23, the level of autophagy-related proteins increased and apoptotic-related proteins decreased in IL-1β-induced OA-like chondrocytes.@*Conclusions@#The expression of PHF23 increased in human OA cartilage and synovium, and was induced by IL-1β through inflammatory stress. PHF23 can suppress autophagy of chondrocytes, and accelerate apoptosis.

2.
Chinese Medical Journal ; (24): 2581-2587, 2019.
Article in English | WPRIM | ID: wpr-774911

ABSTRACT

BACKGROUND@#Plant homeodomain finger protein 23 (PHF23) is a novel autophagy inhibitor gene that has been few studied with respect to orthopedics. This study was to investigate the expression of PHF23 in articular cartilage and synovial tissue, and analyze the relationship between PHF23 and chondrocyte autophagy in osteoarthritis (OA).@*METHODS@#Immunohistochemical staining and western blot were applied to show the expression of PHF23 in cartilage of different outbridge grades and synovial tissue of patient with OA and healthy control. The normal human chondrocyte pre-treated with rapamycin or 3-methyladenine, treated with interleukin-1β (IL-1β). IL-1β induced expression level of PHF23 and autophagy-related proteins light chain 3B-I (LC3B-I), LC3B-II, and P62, were examined by Western blot. A PHF23 gene knock-down model was constructed with small interfering RNA. Western blot was performed to detect the efficiency of PHF23 and the impact of PHF23 knockout on IL-1β-induced expression of autophagy-related and apoptotic-related proteins in chondrocyte.@*RESULTS@#The expression of PHF23 was significantly increased in the high-grade cartilage and synovial tissue of patients with OA. The IL-1β-induced expression of PHF23 was gradually enhanced with time. The level of LC3B-II, P62 changed with time. After knockdown of PHF23, the level of autophagy-related proteins increased and apoptotic-related proteins decreased in IL-1β-induced OA-like chondrocytes.@*CONCLUSIONS@#The expression of PHF23 increased in human OA cartilage and synovium, and was induced by IL-1β through inflammatory stress. PHF23 can suppress autophagy of chondrocytes, and accelerate apoptosis.

3.
Chinese Medical Journal ; (24): 2516-2523, 2015.
Article in English | WPRIM | ID: wpr-315304

ABSTRACT

<p><b>BACKGROUND</b>Researchers initially proposed the substitution of apoptotic chondrocytes in the superficial cartilage by injecting mesenchymal stem cells (MSCs) intraarticularly. This effect was termed as bio-resurfacing. Little evidence supporting the treatment of osteoarthritis (OA) by the delivery of a MSC suspension exists. The aim of this study was to investigate the effects of injecting allogenic MSCs intraarticularly in a rat OA model and to evaluate the influence of immobility on the effects of this treatment.</p><p><b>METHODS</b>We established a rat knee OA model after 4 and 6 weeks and cultured primary bone marrow MSCs. A MSC suspension was injected into the articular space once per week for 3 weeks. A subgroup of knee joints was immobilized for 3 days after each injection, while the remaining joints were nonimmobilized. We used toluidine blue staining, Mankin scores, and TdT-mediated dUTP-biotin nick end labeling staining to evaluate the therapeutic effect of the injections. Comparisons between the therapy side and the control side of the knee joint were made using paired t-test, and comparisons between the immobilized and nonimmobilized subgroups were made using the unpaired t-test. A P value < 0.05 was considered significant.</p><p><b>RESULTS</b>The three investigative approaches revealed less degeneration on the therapy sides of the knee joints than the control sides in both the 4- and 6-week groups (P < 0.05), regardless of immobilization. No significant differences were observed between the immobilized and nonimmobilized subgroups (P > 0.05).</p><p><b>CONCLUSIONS</b>Therapy involving the intraarticular injection of allogenic MSCs promoted cartilage repair in a rat arthritis model, and 3-day immobility after injection had little effect on this therapy.</p>


Subject(s)
Animals , Male , Rats , Cartilage, Articular , Cell Biology , Injections, Intra-Articular , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Cell Biology , Osteoarthritis, Knee , Therapeutics
SELECTION OF CITATIONS
SEARCH DETAIL